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Abstract
In the existing theory of lattice dynamics, the central roles are played by the
harmonic and the quasi-harmonic approximations. In this letter, we try to
derive an accurate solution for the one-dimensional oscillator, exemplified by
the H-point phonon in body-centred cubic metals. This problem is formulated
such that it takes the form of a one-dimensional periodic system. Mo, Na, and
Fe have been chosen as prototypes and we have examined the changes of the
phonon energies with temperature and pressure. We are able to reproduce, for
the first time, the anomalous temperature dependence of the H-point phonon
energy for Mo.

Detailed knowledge of the lattice vibrations in solids is enormously important [1–6] for
understanding the quantum mechanical forces that bind the atoms together and describing
temperature-driven phase transitions using the free energy method. Although several attempts
have been made along these lines there are, as we shall describe below, important questions
covering intrinsic anharmonicity that have not yet been answered.

For a solid at low temperature, it is a well established practice to approximate the potential
energy of the system by a parabola. Considerable progress [7–9] has been achieved and in
general very good agreement with experiments has been obtained, except for some cases where
anomalous behaviour of phonon frequencies has been observed.

When the temperature is raised or the potential energy deviates from the harmonic
approximation, the anharmonicity becomes important [10, 11]. An important distinction has
to be made between the quasi-harmonic approximation (QHA) and intrinsic anharmonicity
(IA). Except for the volume dependence of the force constants, QHA is in essence a harmonic
approximation which only considers the second-order term in the Taylor expansion of the
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potential energy. The IA, which is present at constant volume for certain substances, arises
from the terms higher than second order in the Taylor expansion of the potential energy.

Theoretically, there are two ways to account for the IA. The widely adopted one is the
perturbational technique (PT). However, the PT does not give an accurate solution. For
example, the explanation of certain issues such as the anomalous temperature dependence [12]
of the H-point phonon of Mo remains an open question. The second way is to accurately
solve the vibrational Schrödinger equation. This was first accomplished by Ho et al [13],
studying the vibrations of hydrogen isotopes in NbH, and later done by Elsässer et al [14] for
weakly anharmonic vibrations of H in bcc NbH and for strongly anharmonic vibrations of H
in fcc PdH.

In this letter, we extend the approach of Ho et al [13] to the case of the H-point phonon
for a bcc crystal. By viewing the H-point lattice mode as a one-dimensional periodic system
of atoms, we do not adopt the concept of phonons from the harmonic approximation but relate
the phonon energies to a statistical average of the calculated energy eigenvalue spectra. As will
be seen, our results are most encouraging in that both the measured temperature and pressure
dependences of the H-point phonon are well reproduced in the framework of state-of-the-art,
solid-state quantum mechanical calculations.

In the bcc metal, the so-called H-point oscillation is formed by two equivalent atoms from
the primitive simple cubic unit cell moving in opposite directions [15]. In principle, this is a
three-dimensional question. However, the much heavier atomic mass of Mo compared to that
of H makes the true three-dimensional solution of the vibrational Schrödinger equation and
the 0 K electronic total-energy calculations tremendously time-consuming. The compromise
is to adopt the one-dimensional approximation. This approach is supported by the fact that
the inelastic neutron measurement is usually performed in a specifically polarized direction.
More specifically, we study the H-point oscillation by considering that the atom in the body-
centre position in the bcc unit cell is uniformly distorted towards the face-centre position
(〈001〉 polarization). Figure 1 displays the calculated curve of the total energy of the H-
point oscillation as a function of the atomic displacement away from the body-centre position.
Notice that the ‘moving atom’ can also cross the face-centre position towards the next body-
centre position. This forms a straightforward physical picture of an atom in a one-dimensional
periodic potential field. We can naturally solve such a system, using an approach analogous
to a one-dimensional electronic energy band theory [16].

Let us detail the solution for the system illustrated in figure 1. Let V (x) be the calculated
total energy as a function of the distance x of the ‘moving atom’ away from the body-centre
position with V (x) = V (x + a), where a represents the lattice constant of the bcc unit cell;
then the energy eigenvalue spectrum {ε0, ε1, . . .} of the system can be derived by solving the
following secular equation for an atom in a periodic potential field:[

h̄2G2

2µ
− ε

]
C(G) +

∑
G ′

U(G − G ′)C(G ′) = 0, (1)

where h̄ is the Planck constant divided by 2π , µ is the effective mass of a two-atom system,
U(G) is the coefficient of Fourier transformation of V (x), and C(G) is the coefficient of the
linear combination of the ‘one-atom’ wavefunction with the plane-wave basis exp(iGx).

In order to calculate the 0 K total energy, the full-potential linearized augmented plane-
wave (LAPW) [17] method within the generalized gradient approximation (GGA) [18] is
employed. We use constant muffin-tin radii (Rmt ) of 2.0, 1.75, and 2.0 au for Mo, Fe, and Na,
respectively. The plane-wave cut-off Kcut is determined from Rmt Kcut = 9.0, 9.0, and 8.0
for Mo, Fe, and Na, respectively. For the reciprocal-space integrations we use 1000 k-points
in the full zone. The 0 K total energy is calculated with a lattice displacement step of 0.02 a
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Figure 1. The potential energy, V (x), as a function of the lattice displacement, x , of the body-
centre atom in the case of the H-point oscillatory mode for Mo. The plus signs indicate the
points calculated using the full-potential LAPW method. The solid curve is from the cubic spline
interpolation.
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Figure 2. The calculated energy space (ESA) between the adjacent energy levels as a function of
the energy eigenvalue (E) for Mo, Na, and Fe at their lattice constants under normal conditions.

corresponding to the H-point oscillation with 〈001〉 polarization. Then a denser set of points
corresponding to a lattice displacement step of 0.001 a are derived by cubic spline interpolation,
and used as the input to the fast Fourier transformation to produce U(G) in equation (1). The
convergence was tested by varying the number of plane waves needed to solve equation (1).
We found that 500 (|a/2πGmax| = 250) plane waves were more than enough to give fully
convergent results within the energy range of interest.

As regards the results, let us first focus on the energy eigenvalue spectra as the essential
aspect in understanding the IA versus the QHA. Figure 2 shows the calculated energy space
(ESA) between the adjacent energy levels as functions of the energy eigenvalue for Mo, Na,
and Fe at their lattice constants under normal conditions.

The first important result of the present approach is that, contrary to what was found from
the QHA, at a fixed volume, the ESA is no longer a constant. In fact, the results for Mo, Na,
and Fe show three different behaviours, which we now describe.
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Molybdenum (Mo)

The IA is particularly evident for Mo where the ESA increases sharply with increasing energy
for the first few energy levels, then becomes almost constant, and then decreases (not shown
in figure 2). This is very relevant for the understanding of the anomalous behaviour in Mo.

Sodium (Na)

Na represents the ‘normal case’, where the ESA decreases slowly with increasing energy.

Iron (Fe)

Fe represents the ‘strong-softening case’, where the ESA decreases sharply with increasing
energy for the first few energy levels, then becomes almost constant.

We turn to the interesting question regarding the temperature dependence of the H-point
phonon energy. Since we derive the energy eigenvalue spectra directly from the potential
energy by means of equation (1) without using the harmonic approximation, we have lost the
very concept of the phonon [19]. Therefore we must deduce an equivalent concept from the
energy eigenvalue spectra.

The intuitional picture is that if the calculated ESA becomes smaller (larger) with
increasing energy, the phonon energy will soften (stiffen). From the energy eigenvalue spectra,
we can define two physical quantities. The first is the total thermal energy E :

E = 1

Z

∑
n

[εn − ε0] exp[−βεn], (2)

where ε0 is energy eigenvalue of the ground state (zero-point energy), β = 1/(kB T ), T is the
temperature, kB is Boltzmann’s constant, and Z is the ‘partition function’ in the form

Z =
∑

n

exp[−βεn]. (3)

The second is the number of ‘effective exciters’ N :

N = 1

Z

∑
n

n exp[−βεn]. (4)

Here we suggest two ways to define the ‘effective phonon’ from E and N .

(i) Considering the statistically averaged excitation energy, we define the ‘averaged’ phonon
as

Pa = E

N
. (5)

(ii) Considering the differential ratio of the thermal energy E against the number of ‘effective
exciters’ N , we define the ‘instantaneous’ phonon as

Pi =
(

∂ E

∂ N

)
V

= (∂ E/∂β)V

(∂ N/∂β)V
. (6)

Note that in the case of a harmonic system where {ε0, ε1, . . .} are equally spaced, both
equations (5) and (6) give the harmonic phonon energy exactly.

In figure 3 we have plotted the calculated temperature dependences of the phonon energy
at normal pressure calculated using both equations (5) and (6), using the experimental curves of
the lattice constant versus temperature [20, 21], for Mo, Na, and Fe, together with the measured
data [12, 22–26] with error bars if available. We find that equation (6) does indeed give better
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Figure 3. The H-point phonon energies against temperature at normal pressure for Mo, Na, and
Fe. The solid curves are the results calculated using equation (6) and the dot–dashed curves those
calculated using equation (5). The dotted curves are the results calculated using the harmonic
approximation. For the measured data, the circles are from [12], the plus signs are from [22, 23],
the upward-pointing triangle is from [24], the downward-pointing triangle is from [25], and the
solid circles are from [26].

results compared with equation (5). The agreement between the calculations and experiments
is fairly good if we consider the uncertainties of the experiments and the accuracies of the
current 0 K first-principles method. (One should bear in mind that 0.3 THz corresponds to
1.2 meV.)

Again, the most interesting case is the H-point phonon of Mo, the main issue being how
to explain its behaviour with temperature. In the temperature range between 10 and 1200 K,
the measurements [12] show an upward rise in the phonon energy with temperature. This has
attracted a lot of attention [3–6, 12, 15],but no ab initio calculations are known to reproduce this
anomaly. Many researchers have tried to attribute the anomaly to a many-body renormalization
of the electronic structure near the Fermi level leading to a breakdown of the frozen-phonon
description. In a few cases, researchers have considered that it might be due to the inaccurate
treatment in the existing method of lattice dynamics—the QHA. In the present calculation,
the temperature dependence of the H-point phonon of Mo is reproduced for the first time. In
particular, when the temperature is raised from 0 to 1200 K, our calculation shows that the
phonon energy increases, rather than decreases. The additional finding from the present study
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Figure 4. The H-point phonon energies against pressure at room temperature for Fe. The solid
curve shows the results calculated using equation (6) and the dot–dashed curve those calculated
using equation (5). The dotted curve is the result calculated using the harmonic approximation.
The upward-pointing triangle is from [24], the downward-pointing triangle is from [25], and the
solid diamonds are from [27].

is that if the temperature is raised further above 1200 K, the temperature dependence of the
H-point phonon energy of Mo is normal, i.e. it starts to decrease as it does for the other normal
metals. This theoretical prediction awaits future experiments for verification.

The one remaining doubt is that the anomalous phonon behaviour of Mo might be due to
the experimental uncertainties. This is not the case. In fact, the error bar of the experimental
data obtained by Zarestky et al [12] in the temperature range 10–1200 K is about 0.2 meV,
which is quite a lot less than the phonon energy increase of 0.88 meV.

For comparison, in figure 3, we also plotted the calculated phonon energies using the
conventional harmonic approximation (dotted curve). Under the harmonic approximation, the
temperature dependence of the phonon energy can only emerge through volume change. As
mentioned by Singh and Krakauer [15], in the case of Mo, the calculated phonon energies can
only decrease with increasing temperature which is at variance with experimental findings [12].
We note that at 1200 K, the harmonic approximation produces a phonon energy of 20.1 meV,
which is 15% lower than the experimental value of 23.7 meV.

The last test of the present approach is to study the pressure dependence of the phonon
energy. In a very recent letter, Klotz and Braden [27] reported experiments on the phonon
dispersion of bcc iron up to 10 GPa. Our calculated results for the H-point phonon of Fe
are compared with their data in figure 4. We found that our calculated results agree well the
experimental data.

In summary, we have extended the approach of Ho et al [13] to the case of the H-point
phonon for a bcc crystal. It is of physical interest that we try to shed light on the accurate
solution for the lattice oscillation without using the concept of harmonic approximation or
QHA. The most important consequence of our calculation is that the long-standing question of
the temperature dependence of the H-point phonon for Mo has been answered. We believe that
the present approach will not be limited to the H-point oscillation. It is quite general as long
as the potential is periodic—such as in the phonon softening of L(2/3, 2/3, 2/3) in the bcc–ω

phase transition [1, 28]. We also assume that the present approach can be applied simply to
the case where the second-order derivative of the potential energy is negative [10].

This work was supported by Swedish Foundation for Strategic Research (SSF), Swedish
Natural Science Research Council (NFR), and Göran Gustafsson Foundation.
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